Analysis of changes in microRNA expression profiles in response to the troxerutin-mediated antioxidant effect in human dermal papilla cells

نویسندگان

  • KYUNG MI LIM
  • SUNGKWAN AN
  • OK-KYU LEE
  • MYUNG JOO LEE
  • JEONG PYO LEE
  • KWANG SIK LEE
  • GHANG TAI LEE
  • KUN KOOK LEE
  • SEUNGHEE BAE
چکیده

Dermal papilla (DP) cells function as important regulators of the hair growth cycle. The loss of these cells is a primary cause of diseases characterized by hair loss, including alopecia, and evidence has revealed significantly increased levels of reactive oxygen species (ROS) in hair tissue and DP cells in the balding population. In the present study, troxerutin, a flavonoid derivative of rutin, was demonstrated to have a protective effect against H2O2-mediated cellular damage in human DP (HDP) cells. Biochemical assays revealed that pretreatment with troxerutin exerted a protective effect against H2O2-induced loss of cell viability and H2O2-induced cell death. Further experiments confirmed that troxerutin inhibited the H2O2-induced production of ROS and upregulation of senescence-associated β-galactosidase activity. Using microRNA (miRNA) microarrays, the present study identified 24 miRNAs, which were differentially expressed in the troxerutin-pretreated, H2O2-treated HDP cells. Subsequent prediction using bioinformatics analysis revealed that the altered miRNAs were functionally involved in several cell signaling pathways, including the mitogen-activated protein kinase and WNT pathways. Overall, these results indicated that ROS-mediated cellular damage was inhibited by troxerutin and suggested that the use of troxerutin may be an effective approach in the treatment of alopecia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered miRNA expression profiles are involved in the protective effects of troxerutin against ultraviolet B radiation in normal human dermal fibroblasts.

The aim of this study was to investigate the mechanisms by which troxerutin protects cells against ultraviolet B (UVB) radiation. First, we demonstrate that pre-treatment with troxerutin protects normal human dermal fibroblasts (nHDFs) against UVB-induced cytotoxicity. As shown by migration assay and DNA repair analysis, troxerutin increased cell migration and DNA repair activity in the nHDFs. ...

متن کامل

Identification of ultraviolet B radiation-induced microRNAs in normal human dermal papilla cells

Ultraviolet (UV) radiation impairs intracellular functions by directly damaging DNA and by indirectly generating reactive oxygen species (ROS), which induce cell cycle arrest and apoptosis. UV radiation can also alter gene expression profiles, including those of mRNA and microRNA (miRNA). The effects of UV radiation on cellular functions and gene expression have been widely documented in human ...

متن کامل

The effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte

Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...

متن کامل

Implication of microRNA regulation in para-phenylenediamine-induced cell death and senescence in normal human hair dermal papilla cells

Para-phenylenediamine (PPD) is a major component of hair coloring and black henna products. Although it has been largely demonstrated that PPD induces allergic reactions and increases the risk of tumors in the kidney, liver, thyroid gland and urinary bladder, the effect on dermal papilla cells remains to be elucidated. Therefore, the current study evaluated the effects of PPD on growth, cell de...

متن کامل

Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells

BACKGROUND Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, how...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015